A New Vapor Pressure Equation

Authors

  • M. Edalat Chemical & Petroleum Engineering, University of Tehran
Abstract:

The Wagner equation for prediction of vapor pressure has been modified in order to improve it accuracy. On the basis of this modifications, development of a new equation for prediction of vapor pressure is outlined. Examples of the use of the equation for obtaining vapor pressure for a total of 94 pure substance are given. The proposed equation combines simplicity and accuracy and performs as well or better than the other correlations. This equation is tested and its advantages in obtaining vapor pressure are shown.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

New Local Composition-Equation of State Mixing Rules for High Pressure Vapor-Liquid Equilibria Using EOS/AE

In this study using Equation of State/ Helmholtz excess energy function,  EOS/AE, two new local composition-Equation-of State mixing rules, LCEOS1 and LCEOS2 were developed in which the energy interaction parameters were expressed in terms of attractive and repulsive parameters of the cubic equation of state. The EOS/AE models are applied for equilibrium calculation of nat...

full text

Pressure Dependence of Liquid Vapor Pressure: An Improved Gibbs Prediction

A new model for the vapor phase of a pressurized liquid called "the cluster model: which is originally introduced in this work, along with an accurate equation of state for the liquid phase called the LIR, is used to derive an accurate equation for the vapor pressure of liquid as a function of external pressure. The chemical Potential of both phase have been found to be in good agreement wi...

full text

A Homogenization Technique for the Boltzmann Equation for Low Pressure Chemical Vapor Deposition

We present a homogenization technique for rarefied gas flow over a microstructured surface consisting of patterns of periodic features. The length scale of the model domain is comparable to the mean free path of the molecules, while the scale of the surface patterns is much smaller. The flow is modeled by a system of linear Boltzmann equations with a diffusive boundary condition at the patterne...

full text

Using the Genetic Algorithm based on the Riedel Equation to Predict the Vapor Pressure of Organic Compounds

In this paper, a genetic algorithm (GA) has been used to predict the vapor pressure of pure organic compounds based on Riedel equation. Initially, the coefficients of Riedel equation were optimized. Then, a new term was added to the original Riedel equation to reduce error of the model in prediction of vapor pressures of pure materials. 110 components at two different pressures (10 and 100 kPa)...

full text

A Simple Equation for the Thermal Conductivity of Saturated Vapor Refrigerants

The ability of a material to supply heat by means of conduction is called thermal conductivity, which is defined by Fourier's equation. Thermodynamic data on environmental refrigerants have attracted considerable interest in the design and optimization of refrigeration equipment, such as heat compressors and exchangers. After analysis of statistical effects, a new simple correlation was develop...

full text

Absence of a vestigial vapor pressure paradox.

The enigmatic but much accepted vapor pressure paradox for oriented lipid bilayer samples was recently justified theoretically. Subsequently, recent experiments have shown that there is no vapor pressure paradox. The first result of this paper is to consider another degree of freedom that reverses the previous theoretical conclusion, so that theory and experiment are now in agreement that there...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 3  issue 3

pages  98- 103

publication date 1990-11-01

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023